274 research outputs found

    Nosema neumanni n. sp. (Microsporidia, Nosematidae), a new microsporidian parasite of honeybees, Apis mellifera in Uganda

    Get PDF
    The microsporidium Nosema neumanni n. sp., a new parasite of the honeybee Apis mellifera is described based on its ultra structural and molecular characteristics. Structures resembling microsporidian spores were found by microscopic examination of honeybees from Uganda. Molecular confirmation failed when PCR primers specific for Nosema apis and Nosema ceranae were used, but was successful with primers covering the whole family of Nosematidae. We performed transmission electron microscopy and found typical microsporidian spores which were smaller (length: 2.36 +/- 0.14 m and width: 1.78 +/- 0.06 p.m; n = 6) and had fewer polar filament coils (10-12) when compared to those of known species infecting honeybees. The entire 16S SS(J rRNA region was amplified, cloned and sequenced and was found to be unique with the highest resemblance (97% identity) to N. apis, The incidence of N. neumanni n. sp. in Ugandan honeybees was found to be much higher than of the two other Nosema species

    Visualization of the exocyst complex dynamics at the plasma membrane of Arabidopsis thaliana

    Get PDF
    The exocyst complex, an effector of Rho and Rab GTPases, is believed to function as an exocytotic vesicle tether at the plasma membrane before soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex formation. Exocyst subunits localize to secretory-active regions of the plasma membrane, exemplified by the outer domain of Arabidopsis root epidermal cells. Using variable-angle epifluorescence microscopy, we visualized the dynamics of exocyst subunits at this domain. The subunits colocalized in defined foci at the plasma membrane, distinct from endocytic sites. Exocyst foci were independent of cytoskeleton, although prolonged actin disruption led to changes in exocyst localization. Exocyst foci partially overlapped with vesicles visualized by VAMP721 v-SNARE, but the majority of the foci represent sites without vesicles, as indicated by electron microscopy and drug treatments, supporting the concept of the exocyst functioning as a dynamic particle. We observed a decrease of SEC6-green fluorescent protein foci in an exo70A1 exocyst mutant. Finally, we documented decreased VAMP721 trafficking to the plasma membrane in exo70A1 and exo84b mutants. Our data support the concept that the exocyst-complex subunits dynamically dock and undock at the plasma membrane to create sites primed for vesicle tethering

    Comparison between Apicystis cryptica sp. n. and Apicystis bombi (Arthrogregarida, Apicomplexa): Gregarine parasites that cause fat body hypertrophism in bees

    Get PDF
    The molecular divergence, morphology and pathology of a cryptic gregarine that is related to the bee parasite Apicystis bombi Lipa and Triggiani, 1996 is described. The 18S ribosomal DNA gene sequence of the new gregarine was equally dissimilar to that of A. bombi and the closest related genus Mattesia Naville, 1930, although phylogenetic analysis supported a closer relation to A. bombi. Pronounced divergence with A. bombi was found in the ITS1 sequence (69.6% similarity) and seven protein-coding genes (nucleotide 78.05% and protein 90.2% similarity). The new gregarine was isolated from a Bombus pascuorum Scopoli, 1763 female and caused heavy hypertrophism of the fat body tissue in its host. In addition, infected cells of the hypopharyng ealgland tissue, an important excretory organ of the host, were observed. Mature oocysts were navicular in shape and contained four sporozoites, similar to A. bombi oocysts. Given these characteristics, we proposed the name Apicystis cryptica sp. n. Detections so far indicated that distribution and host species occupation of Apicystis spp. overlap at least in Europe, and that historical detections could not discriminate between them. Specific molecular assays were developed that can be implemented in future pathogen screens that aim to discriminate Apicystis spp. in bees. (C) 2020 The Authors. Published by Elsevier GmbH

    Cell polarity and patterning by PIN trafficking through early endosomal compartments in Arabidopsis thaliana

    Get PDF
    PIN-FORMED (PIN) proteins localize asymmetrically at the plasma membrane and mediate intercellular polar transport of the plant hormone auxin that is crucial for a multitude of developmental processes in plants. PIN localization is under extensive control by environmental or developmental cues, but mechanisms regulating PIN localization are not fully understood. Here we show that early endosomal components ARF GEF BEN1 and newly identified Sec1/Munc18 family protein BEN2 are involved in distinct steps of early endosomal trafficking. BEN1 and BEN2 are collectively required for polar PIN localization, for their dynamic repolarization, and consequently for auxin activity gradient formation and auxin-related developmental processes including embryonic patterning, organogenesis, and vasculature venation patterning. These results show that early endosomal trafficking is crucial for cell polarity and auxin-dependent regulation of plant architecture

    Chloroplasts are central players in sugar-induced leaf growth

    Get PDF
    Leaves are the plant's powerhouses, providing energy for all organs through sugar production during photosynthesis. However, sugars serve not only as a metabolic energy source for sink tissues but also as signaling molecules, affecting gene expression through conserved signaling pathways to regulate plant growth and development. Here, we describe an in vitro experimental assay, allowing one to alter the sucrose (Suc) availability during early Arabidopsis (Arabidopsis thaliana) leaf development, with the aim to identify the affected cellular and molecular processes. The transfer of seedlings to Suc-containing medium showed a profound effect on leaf growth by stimulating cell proliferation and postponing the transition to cell expansion. Furthermore, rapidly after transfer to Suc, mesophyll cells contained fewer and smaller plastids, which are irregular in shape and contain fewer starch granules compared with control mesophyll cells. Short-term transcriptional responses after transfer to Suc revealed the repression of well-known sugar-responsive genes and multiple genes encoded by the plastid, on the one hand, and up-regulation of a GLUCOSE-6-PHOSPHATE TRANSPORTER (GPT2), on the other hand. Mutant gpt2 seedlings showed no stimulation of cell proliferation and no repression of chloroplast-encoded transcripts when transferred to Suc, suggesting that GPT2 plays a critical role in the Suc-mediated effects on early leaf growth. Our findings, therefore, suggest that induction of GPT2 expression by Suc increases the import of glucose-6-phosphate into the plastids that would repress chloroplast-encoded transcripts, restricting chloroplast differentiation. Retrograde signaling from the plastids would then delay the transition to cell expansion and stimulate cell proliferation

    Cell cycle-dependent targeting of a kinesin at the plasma membrane demarcates the division site in plant cells

    Get PDF
    SummaryEukaryotic cells have developed different mechanisms to establish the division plane [1]. In plants, the position is determined before the onset of mitosis by the preprophase band (PPB) [2, 3]. This ring of microtubules surrounds the nucleus and disappears completely by prometaphase. An unknown marker is left behind by the PPB, providing the necessary spatial cues during cytokinesis. At the position of the PPB, cortical actin is removed or modified to generate an actin-depleted zone that was proposed to provide the structural means for phragmoplast guidance [4–6]. Here, we identify a plasma membrane domain that emerges at the onset of mitosis and persists until the end of cytokinesis. The narrow band in the plasma membrane corresponds to the position of the PPB and is prevented from accumulation of a GFP-tagged kinesin GFP-KCA1; hence, it is called the KCA-depleted zone (KDZ). The KDZ demarcates the cortical division site independent from the mitotic cytoskeleton. Cell divisions in the absence of a KDZ resulted in misplaced cell plates, suggesting that the PPB transmits a signal to the plasma membrane required for correct cell plate guidance and vesicular targeting to the cortical division site

    Enhanced membrane protein expression by engineering increased intracellular membrane production

    Get PDF
    Background: Membrane protein research is frequently hampered by the low natural abundance of these proteins in cells and typically relies on recombinant gene expression. Different expression systems, like mammalian cells, insect cells, bacteria and yeast are being used, but very few research efforts have been directed towards specific host cell customization for enhanced expression of membrane proteins. Here we show that by increasing the intracellular membrane production by interfering with a key enzymatic step of lipid synthesis, enhanced expression of membrane proteins in yeast is achieved. Results: We engineered the oleotrophic yeast, Yarrowia lipolytica, by deleting the phosphatidic acid phosphatase, PAH1, which led to massive proliferation of endoplasmic reticulum (ER) membranes. For all eight tested representatives of different integral membrane protein families, we obtained enhanced protein accumulation levels and in some cases enhanced proteolytic integrity in the Delta pah1 strain. We analysed the adenosine A2AR G-protein coupled receptor case in more detail and found that concomitant induction of the unfolded protein response in the Delta pah1 strain enhanced the specific ligand binding activity of the receptor. These data indicate an improved quality control mechanism for membrane proteins accumulating in yeast cells with proliferated ER. Conclusions: We conclude that redirecting the metabolic flux of fatty acids away from triacylglycerol-and sterylester-storage towards membrane phospholipid synthesis by PAH1 gene inactivation, provides a valuable approach to enhance eukaryotic membrane protein production. Complementary to this improvement in membrane protein quantity, UPR co-induction further enhances the quality of the membrane protein in terms of its proper folding and biological activity. Importantly, since these pathways are conserved in all eukaryotes, it will be of interest to investigate similar engineering approaches in other cell types of biotechnological interest, such as insect cells and mammalian cells

    Cytosolic delivery of nanolabels prevents their asymmetric inheritance and enables extended quantitative in vivo cell imaging

    Get PDF
    Long-term in vivo imaging of cells is crucial for the understanding of cellular fate in biological processes in cancer research, immunology, or in cell-based therapies such as beta cell transplantation, in type I diabetes or stem cell therapy. Traditionally, cell labeling with the desired contrast agent occurs ex vivo via spontaneous endocytosis, which is a variable and slow process that requires optimization for each particular label-cell type combination. Following endocytic uptake, the contrast agents mostly remain entrapped in the endolysosomal compartment, which leads to signal instability, cytotoxicity, and asymmetric inheritance of the labels upon cell division. Here, we demonstrate that these disadvantages can be circumvented by delivering contrast agents directly into the cytoplasm via vapor nanobubble photoporation. Compared to classic endocytic uptake, photoporation resulted in :50 and 3 times higher loading of fluorescent dextrans and quantum dots, respectively, with improved signal stability and reduced cytotoxicity: Most: interestingly, cytosolic delivery by iihotoporation prevented asymmetric inheritance of labels by daughter cells over subsequent cell' generations. Instead, unequal inheritance of endocytosed labels resulted in a dramatic increase in polydispersity of the amount of labels per cell with each cell division, hindering accurate quantification of cell numbers in vivo over time. The combined benefits of cell labeling by photoporation resulted in a marked improvement in long-term cell visibility in vivo where an insulin producing cell line (INS-1E cell line) labeled with fluorescent dextrans could be tracked for up to two months in Swiss nude mice compared to 2-Weeks for cells labeled by endocytosis

    Vessel-specific reintroduction of CINNAMOYL-COA REDUCTASE1 (CCR1) in dwarfed ccr1 mutants restores vessel and xylary fiber integrity and increases biomass

    Get PDF
    Lignocellulosic biomass is recalcitrant toward deconstruction into simple sugars due to the presence of lignin. To render lignocellulosic biomass a suitable feedstock for the bio-based economy, plants can be engineered to have decreased amounts of lignin. However, engineered plants with the lowest amounts of lignin exhibit collapsed vessels and yield penalties. Previous efforts were not able to fully overcome this phenotype without settling in sugar yield upon saccharification. Here, we reintroduced CINNAMOYL-COENZYME A REDUCTASE1 (CCR1) expression specifically in the protoxylem and metaxylem vessel cells of Arabidopsis (Arabidopsis thaliana) ccr1 mutants. The resulting ccr1 ProSNBE: CCR1 lines had overcome the vascular collapse and had a total stem biomass yield that was increased up to 59% as compared with the wild type. Raman analysis showed that monolignols synthesized in the vessels also contribute to the lignification of neighboring xylary fibers. The cell wall composition and metabolome of ccr1 ProSNBE: CCR1 still exhibited many similarities to those of ccr1 mutants, regardless of their yield increase. In contrast to a recent report, the yield penalty of ccr1 mutants was not caused by ferulic acid accumulation but was (largely) the consequence of collapsed vessels. Finally, ccr1 ProSNBE: CCR1 plants had a 4-fold increase in total sugar yield when compared with wild-type plants
    • …
    corecore